Face Detection#
On-device AI Face Detection App with ZETIC.MLange
Github Repository#
We provide Face Detection demo application source code for both Android and iOS. repository
What is Face Detection#
The Face Detection model in Google’s MediaPipe is a high-performance machine learning model designed for real-time face detection in images and video streams.
Face Detection Google AI Document : link
Step-by-step implementation#
0. Prerequisites#
Prepare the model Face Detection
from github.
Face Detection: Convert the Tensorflow model to the TorchScript model.
$ pip install tf2onnx $ python -m tf2onnx.convert --tflite face_detection_short_range.tflite --output face_detection_short_range.onnx --opset 13
1. Generate ZETIC.MLange model#
Get your own MLange model key from the model
If you want to get your own model key, please get your own model key as below.
# (1) Get mlange_gen $ wget https://github.com/zetic-ai/ZETIC_MLange_document/raw/main/bin/mlange_gen && chmod 755 mlange_gen # (2) Run mlange_gen for two models # - Face detection model $ ./mlange_gen -m face_detection_short_range.onnx -i input.npy
Expected output
... MLange Model Key : {YOUR_FACE_DETECTION_MODEL_KEY} ...
2. Implement ZeticMLangeModel with your model key#
We prepared a model key for the demo app:
face_detection
. You can use the model key to try the Zetic.MLange Application.Anroid app
For the detailed application setup, please follow
deploy to Android Studio
pageZETIC.MLange usage in
Kotlin
val faceDetectionModel = ZeticMLangeModel(this, 'face_detection') faceDetectionModel.run(inputs) val outputs = faceDetectionModel.outputBuffers
iOS app
For the detailed application setup, please follow
deploy to XCode
pageZETIC.MLange usage in
Swift
let faceDetectionModel = ZeticMLangeModel('face_detection') faceDetectionModel.run(inputs) let outputs = faceDetectionModel.getOutputDataArray()
3. Prepare Face Detection image feature extractor for Android and iOS#
We provide a Face Detection feature extractor as an Android and iOS module.
(The Face Detection feature extractor extension will be exposed as an open-source repository soon.)
You can use your own feature extractor if you have one for Face Detection usage
For Android
// (0) Initialize ZeticMLangeFeatureFaceDetection val feature = ZeticMLangeFeatureFaceDetection() // (1) Preprocess bitmap and get processed float array val inputs = feature.preprocess(bitmap) ... // (2) Postprocess to bitmap val resultBitmap = feature.postprocess(outputs)
For iOS
import ZeticMLange // (0) Initialize ZeticMLangeFeatureFaceDetection let feature = ZeticMLangeFeatureFaceDetection() // (1) Preprocess UIImage and get processed float array let inputs = feature.preprocess(image) ... // (2) Postprocess to UIImage let resultBitmap = feature.postprocess(&outputs)
Total Face Detection Process implementation#
Pipelining two models.
For Android
Kotlin
Face Detection Model
// (0) Initialization Models val faceDetectionModel = ZeticMLangeModel(this, 'face_detection') // (1) Initialization Feature val faceDetectionFeature = ZeticMLangeFeatureFaceDetection() // (2) Preprocess Image val faceDetectionInputs = faceDetectionFeature.preprocess(bitmap) // (3) Process Model faceDetectionModel.run(faceDetectionInputs) val faceDetectionOutputs = faceDetectionModel.getOutputDataArray() // (4) Postprocess model run result val faceDetectionPostprocessed = faceDetectionFeature.postprocess(faceDetectionOutputs)
For iOS
Swift
Face Detection Model
// (0) Initialization Models let faceDetectionModel = ZeticMLangeModel('face_detection') // (1) Initialization Feature let faceDetectionFeature = ZeticMLangeFeatureFaceDetection() // (2) Preprocess Image let faceDetectionInputs = faceDetectionFeature.preprocess(bitmap) // (3) Process Model faceDetectionModel.run(faceDetectionInputs) let faceDetectionOutputs = faceDetectionModel.getOutputDataArray() // (4) Postprocess model run result let faceDetectionPostprocessed = faceDetectionFeature.postprocess(&faceDetectionOutputs)
Conclusion#
With ZETIC.MLange, building your own on-device AI applications with NPU utilization is incredibly easy. We’ve developed a custom OpenCV module and an ML application pipeline, making the implementation of models like face detection remarkably simple and efficient. This streamlined approach allows you to integrate advanced features with minimal effort. We’re continually uploading new models to our examples and HuggingFace page. Stay tuned, and contact us for collaborations!